Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.522
Filtrar
1.
Biotechnol Adv ; 72: 108352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574900

RESUMO

Nitrilases represent a distinct class of enzymes that play a pivotal role in catalyzing the hydrolysis of nitrile compounds, leading to the formation of corresponding carboxylic acids. These enzymatic entities have garnered significant attention across a spectrum of industries, encompassing pharmaceuticals, agrochemicals, and fine chemicals. Moreover, their significance has been accentuated by mounting environmental pressures, propelling them into the forefront of biodegradation and bioremediation endeavors. Nevertheless, the natural nitrilases exhibit intrinsic limitations such as low thermal stability, narrow substrate selectivity, and inadaptability to varying environmental conditions. In the past decade, substantial efforts have been made in elucidating the structural underpinnings and catalytic mechanisms of nitrilase, providing basis for engineering of nitrilases. Significant breakthroughs have been made in the regulation of nitrilases with ideal catalytic properties and application of the enzymes for industrial productions. This review endeavors to provide a comprehensive discourse and summary of recent research advancements related to nitrilases, with a particular emphasis on the elucidation of the structural attributes, catalytic mechanisms, catalytic characteristics, and strategies for improving catalytic performance of nitrilases. Moreover, the exploration extends to the domain of process engineering and the multifarious applications of nitrilases. Furthermore, the future development trend of nitrilases is prospected, providing important guidance for research and application in the related fields.


Assuntos
Aminoidrolases , Nitrilas , Aminoidrolases/genética , Aminoidrolases/química , Catálise , Biodegradação Ambiental
2.
Biotechnol J ; 19(3): e2300706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479984

RESUMO

4-cyanobenzoic acid serves as a crucial intermediate for the synthesis of various high-value organic compounds. The enzymatic hydrolysis of terephthalonitrile to produce 4-cyanobenzoic acid using nitrilase offers the advantages of a simple reaction pathway, environmental friendliness, and easy product separation. In order to efficiently develop nitrilases that meet industrial production requirements, the virtual screening method used in the study is established and mature. From a total of 371 amino acids in the nitrilase AfNIT, which exhibits activity in terephthalonitrile hydrolysis, three candidate sites (F168, S192, and T201) were identified, and a "small and accurate" mutant library was constructed. The triple mutant F168V/T201N/S192F was screened from this small mutant library with a specific activity of 227.3 U mg-1 , which was 3.8 times higher than that of the wild-type AfNIT. Using the whole-cell biocatalyst containing the mutant F168V/T201N/S192F, terephthalonitrile was successfully hydrolyzed at a concentration of 150 g L-1 to produce 4-cyanobenzoic acid with a final yield of 170.3 g L-1 and a conversion rate of 98.7%. The obtained nitrilase mutant F168V/T201N/S192F in this study can be effectively applied in the biomanufacturing of 4-cyanobenzoic acid using terephthalonitrile as a substrate. Furthermore, the results also demonstrate the significant improvement in predictive accuracy achieved through the latest AI-assisted computer simulation methods. This approach represents a promising and feasible new technological pathway for assisting enzyme engineering research, laying a theoretical foundation for other related studies.


Assuntos
Aminoidrolases , Benzoatos , Simulação por Computador , Aminoidrolases/genética , Aminoidrolases/química
3.
Bioorg Chem ; 143: 107055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185008

RESUMO

Hydration, a secondary activity mediated by nitrilase, is a promising new pathway for amide production. However, low hydration activity of nitrilase or trade-off between hydration and catalytic activity hinders its application in the production of amides. Here, natural C-terminal-truncated wild-type nitrilase, mined from a public database, obtained a high-hydration activity nitrilase as a novel evolutionary starting point for further protein engineering. The nitrilase Nit-74 from Spirosoma linguale DSM 74 was successfully obtained and exhibited the highest hydration activity level, performing 50.7 % nicotinamide formation and 87.6 % conversion to 2 mM substrate 3-cyanopyridine. Steric hindrance of the catalytic activity center and the N-terminus of the catalytic cysteine residue helped us identify three key residues: I166, W168, and T191. Saturation mutations resulted in three single mutants that further improved the hydration activity of N-heterocyclic nitriles. Among them, the mutant T191S performed 72.7 % nicotinamide formation, which was much higher than the previously reported highest level of 18.7 %. Additionally, mutants I166N and W168Y exhibited a 97.5 % 2-picolinamide ratio and 97.7 % isonicotinamide ratio without any loss of catalytic activity, which did not indicate a trade-off effect. Our results expand the screening and evolution library of promiscuous nitrilases with high hydration activity for amide formation.


Assuntos
Aminoidrolases , Cytophagaceae , Nitrilas , Pirimidinas , Triazóis , Nitrilas/química , Aminoidrolases/genética , Aminoidrolases/química , Aminoidrolases/metabolismo , Amidas , Niacinamida , Especificidade por Substrato
4.
Enzyme Microb Technol ; 174: 110389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134733

RESUMO

Cyanide is widely utilized in the extraction of precious metal extraction even though it has been deemed as the most toxic compound. Fusarium oxysporum has been shown to degrade cyanide through the activity of the Nitrilase enzyme. In this study, the coding sequence of nitrilase gene from F. oxysporum genomic DNA was optimized for cloning and expression in E. coli. The pUC57 containing synthetic optimized nitrilase gene was transferred into E. coli DH5α strain. This nitrilase gene was sub-cloned into pET26b (+) expression vector containing an in-built His-tag at the C-terminal end to facilitate its purification. The recombinant plasmid, pETAM1, was confirmed by PCR, digestion pattern, and sequencing. The recombinant protein was overproduced in E. coli BL21 (DE3). The results of the SDS-PAGE pattern and Western blot analysis confirmed the expression of the expected recombinant protein. For expression optimization of Nitrilase protein, M16 orthogonal experimental design of the Taguchi method was used. The effect of induction time, temperature and IPTG concentration were examined using four levels for each factors. Estimation of the amount of the expressed protein was calculated via densitometry on SDS-PAGE. The enzyme activity and expression in E. coli proved to be successful since there was ammonia production when potassium cyanide and acrylonitrile were used as substrates while the highest enzyme activity of 88% was expressed at 30 °C. The Km and Vm values of the expressed Nitrilase enzyme were determined to be 0.68 mM and 0.48 mM/min respectively.


Assuntos
Aminoidrolases , Cianetos , Escherichia coli , Fusarium , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Cianetos/metabolismo
5.
Biotechnol Appl Biochem ; 70(6): 2150-2162, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37766485

RESUMO

Pterin deaminase stands as a metalloenzyme and exhibits both antitumor and anticancer activities. Therefore, this study aimed to explore the molecular function of zinc finger protein-160 (zfp160) from Aspergillus terreus with its enzyme mechanism in detail. Subsequently, preliminary molecular docking studies on zfp160 from A. terreus were done. Next, the cloning and expression of zfp160 protein were carried out. Following, protein expression was induced and purified through nickel NTA column with imidazole gradient elution. Through the Mascot search engine tool, the expressed protein of MALDI-TOF was confirmed by 32 kDa bands of SDS-PAGE. Furthermore, its enzymatic characterization and biochemical categorization were also explored. The optimum conditions for enzyme were determined to be pH 8, temperature 35°C, km 50 µm with folic acid as substrate, and Vmax of 24.16 (IU/mL). Further, in silico analysis tried to explore the interactions and binding affinity of various substrates to the modeled pterin deaminase from A. terreus. Our results revealed the binding mode of different substrate molecules with pterin deaminase using the approximate scoring functions that possibly correlate with actual experimental binding affinities. Following this, molecular dynamic simulations provided the in-depth knowledge on deciphering functional mechanisms of pterin deaminase over other drugs.


Assuntos
Aminoidrolases , Aspergillus , Simulação de Acoplamento Molecular , Aminoidrolases/química , Aminoidrolases/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
6.
Nat Commun ; 14(1): 5241, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640699

RESUMO

Human APOBEC3 (A3) cytidine deaminases are antiviral factors that are particularly potent against retroviruses. As a countermeasure, HIV-1 uses a viral infectivity factor (Vif) to target specific human A3s for proteasomal degradation. Vif recruits cellular transcription cofactor CBF-ß and Cullin-5 (CUL5) RING E3 ubiquitin ligase to bind different A3s distinctively, but how this is accomplished remains unclear in the absence of the atomic structure of the complex. Here, we present the cryo-EM structures of HIV-1 Vif in complex with human A3H, CBF-ß and components of CUL5 ubiquitin ligase (CUL5, ELOB, and ELOC). Vif nucleates the entire complex by directly binding four human proteins, A3H, CBF-ß, CUL5, and ELOC. The structures reveal a large interface area between A3H and Vif, primarily mediated by an α-helical side of A3H and a five-stranded ß-sheet of Vif. This A3H-Vif interface unveils the basis for sensitivity-modulating polymorphism of both proteins, including a previously reported gain-of-function mutation in Vif isolated from HIV/AIDS patients. Our structural and functional results provide insights into the remarkable interplay between HIV and humans and would inform development efforts for anti-HIV therapeutics.


Assuntos
Síndrome de Imunodeficiência Adquirida , HIV-1 , Humanos , Ubiquitina-Proteína Ligases/genética , Antivirais , Citidina Desaminase , Proteínas Culina/genética , Aminoidrolases
7.
Phytomedicine ; 117: 154908, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321077

RESUMO

BACKGROUND: Abnormal endocrine metabolism caused by polycystic ovary syndrome combined with insulin resistance (PCOS-IR) poses a serious risk to reproductive health in females. Quercitrin is a flavonoid that can efficiently improve both endocrine and metabolic abnormalities. However, it remains unclear if this agent can exert therapeutic effect on PCOS-IR. METHODS: The present study used a combination of metabolomic and bioinformatic methods to screen key molecules and pathways involved in PCOS-IR. A rat model of PCOS-IR and an adipocyte IR model were generated to investigate the role of quercitrin in regulating reproductive endocrine and lipid metabolism processes in PCOS-IR. RESULTS: Peptidase M20 domain containing 1 (PM20D1) was screened using bioinformatics to evaluate its participation in PCOS-IR. PCOS-IR regulation via the PI3K/Akt signaling pathway was also investigated. Experimental analysis showed that PM20D1 levels were reduced in insulin-resistant 3T3-L1 cells and a letrozole PCOS-IR rat model. Reproductive function was inhibited, and endocrine metabolism was abnormal. The loss of adipocyte PM20D1 aggravated IR. In addition, PM20D1 and PI3K interacted with each other in the PCOS-IR model. Furthermore, the PI3K/Akt signaling pathway was shown to participate in lipid metabolism disorders and PCOS-IR regulation. Quercitrin reversed these reproductive and metabolic disorders. CONCLUSION: PM20D1 and PI3K/Akt were required for lipolysis and endocrine regulation in PCOS-IR to restore ovarian function and maintain normal endocrine metabolism. By upregulating the expression of PM20D1, quercitrin activated the PI3K/Akt signaling pathway, improved adipocyte catabolism, corrected reproductive and metabolic abnormalities, and had a therapeutic effect on PCOS-IR.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Síndrome do Ovário Policístico , Feminino , Animais , Ratos , Ratos Sprague-Dawley , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Transtornos do Metabolismo dos Lipídeos/metabolismo , Resistência à Insulina , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Camundongos , Linhagem Celular , Aminoidrolases/metabolismo
8.
Appl Environ Microbiol ; 89(6): e0022023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37191513

RESUMO

Nitrilase can catalyze nitrile compounds to generate corresponding carboxylic acids. Nitrilases as promiscuous enzymes can catalyze a variety of nitrile substrates, such as aliphatic nitriles, aromatic nitriles, etc. However, researchers tend to prefer enzymes with high substrate specificity and high catalytic efficiency. In this study, we developed an active pocket remodeling (ALF-scanning) based on modulating the geometry of the nitrilase active pocket to alter substrate preference and improve catalytic efficiency. Using this strategy, combined with site-directed saturation mutagenesis, we successfully obtained 4 mutants with strong aromatic nitrile preference and high catalytic activity, W170G, V198L, M197F, and F202M, respectively. To explore the synergistic relationship of these 4 mutations, we constructed 6 double-combination mutants and 4 triple-combination mutants. By combining mutations, we obtained the synergistically enhanced mutant V198L/W170G, which has a significant preference for aromatic nitrile substrates. Compared with the wild type, its specific activities for 4 aromatic nitrile substrates are increased to 11.10-, 12.10-, 26.25-, and 2.55-fold, respectively. By mechanistic dissection, we found that V198L/W170G introduced a stronger substrate-residue π-alkyl interaction in the active pocket and obtained a larger substrate cavity (225.66 Å3 to 307.58 Å3), making aromatic nitrile substrates more accessible to be catalyzed by the active center. Finally, we conducted experiments to rationally design the substrate preference of 3 other nitrilases based on the substrate preference mechanism and also obtained the corresponding aromatic nitrile substrate preference mutants of these three nitrilases and these mutants with greatly improved catalytic efficiency. Notably, the substrate range of SmNit is widened. IMPORTANCE In this study, the active pocket was largely remodeled based on the ALF-scanning strategy we developed. It is believed that ALF-scanning not only could be employed for substrate preference modification but might also play a role in protein engineering of other enzymatic properties, such as substrate region selectivity and substrate spectrum. In addition, the mechanism of aromatic nitrile substrate adaptation we found is widely applicable to other nitrilases in nature. To a large extent, it could provide a theoretical basis for the rational design of other industrial enzymes.


Assuntos
Aminoidrolases , Nitrilas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Catálise , Engenharia de Proteínas , Especificidade por Substrato
9.
Appl Microbiol Biotechnol ; 107(7-8): 2661-2670, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36929186

RESUMO

Previously, we established a platform for antibody/protein affinity maturation based on CHO cell display. The gene of interest was mutated by activation-induced cytidine deaminase (AID), and then, a mutation library mainly containing G/C to A/T conversion was obtained by simply proliferating cells. However, the AID-induced G/C to A/T conversion limits the diversity space of the mutation library. In contrast to AID, adenine deaminase (ADA) can convert A/T to G/C. In this study, we demonstrated that ADA could efficiently induce random A/T to G/C mutations on the target gene in the CHO cell display and could be applied in affinity maturation. Our data also showed that more mutant types were obtained through the combined use of AID and ADA, thus offering an opportunity to acquire new mutants offering higher affinities than those obtained by only using AID. Examples presented in this study showed that ADA contributed to the improvement of antibody affinity either with or without AID in CHO display. KEY POINTS: • ADA is able to induce random mutations on antibody gene in mammalian cells. • ADA induces mutations on A/T bases to compensate AID which can induce mutation on G/C. • Combination of AID and ADA can increase mutation types and maturation efficiencies.


Assuntos
Aminoidrolases , Hidrolases , Cricetinae , Animais , Afinidade de Anticorpos , Mutação , Células CHO , Cricetulus
10.
Viruses ; 15(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36851677

RESUMO

The seven human APOBEC3 enzymes (APOBEC3A through H, excluding E) are host restriction factors. Most of the APOBEC3 enzymes can restrict HIV-1 replication with different efficiencies. The HIV-1 Vif protein combats APOBEC3-mediated restriction by inducing ubiquitination and degradation in the proteasome. APOBEC3F and APOBEC3G can hetero-oligomerize, which increases their restriction capacity and resistance to Vif. Here we determined if APOBEC3C, APOBEC3F, or APOBEC3G could hetero-oligomerize with APOBEC3H haplotype I. APOBEC3H haplotype I has a short half-life in cells due to ubiquitination and degradation by host proteins, but is also resistant to Vif. We hypothesized that hetero-oligomerization with APOBEC3H haplotype I may result in less Vif-mediated degradation of the interacting APOBEC3 and stabilize APOBEC3H haplotype I, resulting in more efficient HIV-1 restriction. Although we found that all three APOBEC3s could interact with APOBEC3H haplotype I, only APOBEC3F affected APOBEC3H haplotype I by surprisingly accelerating its proteasomal degradation. However, this increased APOBEC3F levels in cells and virions in the absence or presence of Vif and enabled APOBEC3F-mediated restriction of HIV-1 in the presence of Vif. Altogether, the data suggest that APOBEC3 enzymes can co-regulate each other at the protein level and that they cooperate to ensure HIV-1 inactivation rather than evolution.


Assuntos
Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Haplótipos , Citidina Desaminase , Citoplasma , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Citosina Desaminase , Desaminases APOBEC , Aminoidrolases/genética
11.
Biotechnol Appl Biochem ; 70(1): 193-200, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35352406

RESUMO

Microbes make a remarkable contribution to the health and well-being of living beings all over the world. Interestingly, pterin deaminase is an amidohydrolase enzyme that exhibits antitumor, anticancer activities and antioxidant properties. With the existing evidence of the presence of pterin deaminase from microbial sources, an attempt was made to reveal the existence of this enzyme in the unexplored bacterium Agrobacterium tumefaciens LBA4404. After, the cells were harvested and characterized as intracellular enzymes and then partially purified through acetone precipitation. Subsequently, further purification step was carried out with an ion-exchange chromatogram (HiTrap Q FF) using the Fast-Protein Liquid Chromatography technique (FPLC). Henceforward, the approximate molecular weight of the purified pterin deaminase was determined through SDS-PAGE. Furthermore, the purified protein was identified accurately by MALDI-TOF, and the sequence was explored through a Mascot search engine. Additionally, the three-dimensional structure was predicted and then validated, as well as ligand-binding sites, and the stability of this enzyme was confirmed for the first time. Thus, the present study revealed the selected parameters showing a considerable impact on the identification and purification of pterin deaminase from A. tumefaciens LBA4404 for the first time. The enzyme specificity makes it a favorable choice as a potent anticancer agent.


Assuntos
Agrobacterium tumefaciens , Amidoidrolases , Aminoidrolases/química , Aminoidrolases/metabolismo
12.
Crit Rev Biotechnol ; 43(8): 1226-1235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36154348

RESUMO

(R)-(-)-mandelic acid is an important carboxylic acid known for its numerous potential applications in the pharmaceutical industry as it is an ideal starting material for the synthesis of antibiotics, antiobesity drugs and antitumor agents. In past few decades, the synthesis of (R)-(-)-mandelic acid has been undertaken mainly through the chemical route. However, chemical synthesis of optically pure (R)-(-)-mandelic acid is difficult to achieve at an industrial scale. Therefore, its microbe mediated production has gained considerable attention as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of (R)-(-)-mandelic acid through microbial biotransformation and enzymatic catalysis; in particular, an analysis and comparison of the synthetic methods and different enzymes. The wild type as well as recombinant microbial strains for the production of (R)-(-)-mandelic acid have been elucidated. In addition, different microbial strategies used for maximum bioconversion of mandelonitrile into (R)-(-)-mandelic acid are discussed in detail with regard to higher substrate tolerance and maximum bioconversion.HighlightsMandelonitrile, mandelamide and o-chloromandelonitrile can be used as substrates to produce (R)-(-)-mandelic acid by enzymes.Three enzymes (nitrilase, nitrile hydratase and amidase) are systematically introduced for production of (R)-(-)-mandelic acid.Microbial transformation is able to produce optically pure (R)-(-)-mandelic acid with 100% productive yield.


Assuntos
Biotecnologia , Ácidos Mandélicos , Ácidos Mandélicos/metabolismo , Biotransformação , Aminoidrolases/metabolismo
13.
Bioprocess Biosyst Eng ; 46(2): 195-206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36451047

RESUMO

In the present study, the Gordonia terrae was subjected to chemical mutagenesis using ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 5-bromouracil (5-BU) and hydroxylamine with the aim of improving the catalytic efficiency of its nitrilase for conversion of 3-cyanopyridine to nicotinic acid. A mutant MN12 generated with MNNG exhibited increase in nitrilase activity from 0.5 U/mg dcw (dry cell weight) (in the wild G. terrae) to 1.33 U/mg dcw. Further optimizations of culture conditions using response surface methodology enhanced the enzyme production to 1.2-fold. Whole-cell catalysis was adopted for bench-scale synthesis of nicotinic acid, and 100% conversion of 100 mM 3-cyanopyridine was achieved in potassium phosphate buffer (0.1 M, pH 8.0) at 40 °C in 15 min. The whole-cell nitrilase of the mutant MN12 exhibited higher rate of product formation and volumetric productivity, i.e., 24.56 g/h/g dcw and 221 g/L as compared to 8.95 g/h/g dcw and 196.8 g/L of the wild G. terrae. The recovered product was confirmed by HPLC, FTIR and NMR analysis with high purity (> 99.9%). These results indicated that the mutant MN12 of G. terrae as whole-cell nitrilase is a very promising biocatalyst for the large-scale synthesis of nicotinic acid.


Assuntos
Bactéria Gordonia , Niacina , Metilnitronitrosoguanidina , Aminoidrolases/química , Biotransformação , Bactéria Gordonia/genética , Metano
14.
Nat Biotechnol ; 41(5): 663-672, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36357717

RESUMO

Cytosine base editors (CBEs) efficiently generate precise C·G-to-T·A base conversions, but the activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family deaminase component induces considerable off-target effects and indels. To explore unnatural cytosine deaminases, we repurpose the adenine deaminase TadA-8e for cytosine conversion. The introduction of an N46L variant in TadA-8e eliminates its adenine deaminase activity and results in a TadA-8e-derived C-to-G base editor (Td-CGBE) capable of highly efficient and precise C·G-to-G·C editing. Through fusion with uracil glycosylase inhibitors and further introduction of additional variants, a series of Td-CBEs was obtained either with a high activity similar to that of BE4max or with higher precision compared to other reported accurate CBEs. Td-CGBE/Td-CBEs show very low indel effects and a background level of Cas9-dependent or Cas9-independent DNA/RNA off-target editing. Moreover, Td-CGBE/Td-CBEs are more efficient in generating accurate edits in homopolymeric cytosine sites in cells or mouse embryos, suggesting their accuracy and safety for gene therapy and other applications.


Assuntos
Citosina , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Citosina/metabolismo , Aminoidrolases/metabolismo , RNA , Sistemas CRISPR-Cas/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo
15.
Curr Protein Pept Sci ; 23(12): 874-882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36154580

RESUMO

BACKGROUND: Microbial nitrilases play a vital role in the biodegradation of nitrilecontaining pollutants, effluent treatments in chemical and textile industries, and the biosynthesis of Indole-3-acetic acid (IAA) from tryptophan in plants. However, the lack of structural information limits the correlation between its activity and substrate specificity. METHODS: The present study involves the genome mining of bacteria for the distribution and diversity of nitrilases, their phylogenetic analysis and structural characterization for motifs/ domains, followed by interaction with substrates. RESULTS: Here, we mined the bacterial genomes for nitrilases and correlated their functions to hypothetical, uncharacterized, or putative ones. The comparative genomics revealed four AcNit, As7Nit, Cn5Nit and Cn9Nit predicted nitrilases encoding genes as uncharacterized subgroups of the nitrilase superfamily. The annotation of these nitrilases encoding genes revealed relatedness with nitrilase hydratases and cyanoalanine hydratases. At the proteomics level, the motif analysis of these protein sequences predicted a single motif of 20-28 aa, with glutamate (E), lysine (K) and cysteine (C) residues as a part of catalytic triad along with several other residues at the active site. The structural analysis of the nitrilases revealed geometrical and close conformation in the form of α-helices and ß-sheets arranged in a sandwich structure. The catalytic residues constituted the substrate binding pocket and exhibited the broad nitrile substrate spectra for aromatic and aliphatic nitriles-containing compounds. The aromatic amino acid residues Y159 in the active site were predicted to be responsible for substrate specificity. The substitution of non-aromatic alanine residue in place of Y159 completely disrupted the catalytic activity for indole-3-acetonitrile (IAN). CONCLUSION: The present study reports genome mining and simulation of structure-function relationship for uncharacterized bacterial nitrilases and their role in the biodegradation of pollutants and xenobiotics, which could be of applications in different industrial sectors.


Assuntos
Bactérias , Nitrilas , Filogenia , Nitrilas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Aminoidrolases/química , Especificidade por Substrato
16.
Dis Markers ; 2022: 7527996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051358

RESUMO

Purpose: Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) has been reported to be overexpressed in non-small-cell lung cancer (NSCLC) and to correlate with malignant proliferation. However, the mechanism of high MTHFD2 expression in NSCLC has not been clarified. Methods: qPCR, western blot, and immunofluorescence experiments were used to measure the expression of related mRNAs and proteins. Cell apoptosis was measured by flow cytometry and TUNEL assays. The CCK-8 assay was used to determine cell viability. Flow cytometry was used to analyze the cell cycle. ROS, H2O2, MDA, SOD, and NADPH/NADP+ were evaluated by relevant assay kits. Transfection of siRNA or vectors was used to downregulate or upregulate gene expression. Dual-luciferase reporter gene assays were used to evaluate the regulated relationship between MTHFD2 and ATF4 or MYC. Results: MTHFD2 was highly expressed in NSCLC cells. Knockdown of MTHFD2 inhibited proliferation and increased apoptosis. Furthermore, oxidative factors significantly increased, while antioxidant factors significantly decreased in NSCLC cells with MTHFD2 knockdown, indicating that MTHFD2 was involved in NSCLC progression through the redox pathway. Although MTHFD2 was downregulated with ATF4 silencing, the dual-luciferase reporter assay suggested that ATF4 did not directly mediate MTHFD2 transcription. Further studies revealed that MYC had a transcriptional effect on MTHFD2 and was also regulated by ATF4. PCR, and western blotting experiments with ATF4 knockdown and MYC overexpression as well as ATF4 overexpression and MYC knockdown proved that ATF4 stimulated MTHFD2 through MYC mediation. Conclusions: ATF4 promoted high expression of MTHFD2 in NSCLC dependent on MYC.


Assuntos
Fator 4 Ativador da Transcrição , Aminoidrolases , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Enzimas Multifuncionais , Proteínas Proto-Oncogênicas c-myc , Fator 4 Ativador da Transcrição/genética , Aminoidrolases/genética , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Peróxido de Hidrogênio/metabolismo , Luciferases/genética , Neoplasias Pulmonares/patologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Enzimas Multifuncionais/genética , Oxirredução , Proteínas Proto-Oncogênicas c-myc/genética
17.
Nat Metab ; 4(9): 1119-1137, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131208

RESUMO

Recurrent loss-of-function deletions cause frequent inactivation of tumour suppressor genes but often also involve the collateral deletion of essential genes in chromosomal proximity, engendering dependence on paralogues that maintain similar function. Although these paralogues are attractive anticancer targets, no methodology exists to uncover such collateral lethal genes. Here we report a framework for collateral lethal gene identification via metabolic fluxes, CLIM, and use it to reveal MTHFD2 as a collateral lethal gene in UQCR11-deleted ovarian tumours. We show that MTHFD2 has a non-canonical oxidative function to provide mitochondrial NAD+, and demonstrate the regulation of systemic metabolic activity by the paralogue metabolic pathway maintaining metabolic flux compensation. This UQCR11-MTHFD2 collateral lethality is confirmed in vivo, with MTHFD2 inhibition leading to complete remission of UQCR11-deleted ovarian tumours. Using CLIM's machine learning and genome-scale metabolic flux analysis, we elucidate the broad efficacy of targeting MTHFD2 despite distinct cancer genetic profiles co-occurring with UQCR11 deletion and irrespective of stromal compositions of tumours.


Assuntos
Aminoidrolases , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Enzimas Multifuncionais , Neoplasias Ovarianas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Feminino , Humanos , Hidrolases , Redes e Vias Metabólicas , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mitocôndrias/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , NAD/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
18.
Biochem Biophys Res Commun ; 628: 49-56, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36081278

RESUMO

The coagulation factor 9 gene (FIX) point mutation contributes to most hemophilia B cases, providing ideal gene correction models. Here we identified the frequent mutation G20519A (R226Q) in FIX, which resulted in many severe and moderate hemophilia B patients. This study aimed to investigate the effect of HDR and base editing in correcting FIX mutant. We first constructed HEK293 and liver-derived cell lines Huh7 cells stabling carrying mutated FIX containing G20519A (HEK293-FIXmut and Huh7-FIXmut). Then, CRISPR/Cas9-based homology-directed repair (HDR) and base editing were used for the correction of this mutated point. We used Cas9 nickase (nCas9) mediated HDR and the advanced base editor ABE8e to correct G20519A and then measured the concentration and activity of FIX. Furthermore, we used the star-shaped poly(lysine) gene nanocarriers to deliver the ABE8e correction systems into HEK293-FIXmut and Huh7-FIXmut stem cells to correct mutated FIX. As a result, we found that gRNAs directed inefficient HDR in correcting G20519A. The ABE8e corrected the mutation efficiently in both HEK293-FIXmut and Huh7-FIXmut stem cells. In addition, the star-shaped poly(lysine) carriers delivered non-viral vectors into stem cells efficiently. The nanocarriers-delivered ABE8e system corrected mutated FIX in stem cells, and the stem cells secreted active FIX in high concentration. In conclusion, our study provides a potential alternative for correcting mutated FIX in hemophilia B patients.


Assuntos
Edição de Genes , Hemofilia A , Hemofilia B , Aminoidrolases/genética , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Sistemas CRISPR-Cas/genética , Desoxirribonuclease I/metabolismo , Edição de Genes/métodos , Células HEK293 , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Mutação , Mutação de Sentido Incorreto , Polilisina/química , Células-Tronco/metabolismo
19.
Cancer Lett ; 549: 215903, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36089117

RESUMO

The mitochondrial folate enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) has shown oncogenic roles in various cancers and may have non-metabolic functions. This study investigated the role of MTHFD2 in glioblastoma pathogenesis. We find that MTHFD2 expression is enriched in gliomas by analysing public databases and clinical specimens. RNA interference (RNAi) and inhibitor of MTHFD2 hamper the proliferation of glioblastoma and induce apoptosis in cell lines, glioma stem-like cells (GSCs) and patient-derived xenografts (PDX). Metabolomic analyses show that MTHFD2 depletion suppresses the central carbon metabolic pathways, including glycolysis, the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle. GSEA reveals a novel non-metabolic function of MTHFD2 in association with the unfolded protein response (UPR). MTHFD2 depletion activates the PERK/eIF2α axis which contributes to translation inhibition and apoptosis; these effects are attenuated by a PERK inhibitor. Mechanistically, MTHFD2 may be linked to UPR via the post-transcriptionally regulation of chaperone protein GRP78. In conclusion, MTHFD2 could be a promising therapeutic target for glioblastoma. Besides its canonical role, MTHFD2 may contribute to glioblastoma pathogenesis via UPR, highlighting a newly identified functional link between one-carbon metabolism and cell stress response.


Assuntos
Glioblastoma , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Aminoidrolases , Carbono/metabolismo , Ácido Fólico/metabolismo , Glioblastoma/patologia , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Enzimas Multifuncionais , Ácidos Tricarboxílicos , Resposta a Proteínas não Dobradas
20.
Biotechnol Lett ; 44(10): 1163-1173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36050605

RESUMO

PURPOSE: We screened nitrilases with significant nitrile hydratase activity to exploit their potential in benzylic amide biosynthesis. We also investigated the factors affecting their hydration activity to support further research on benzylic amide production by nitrilase. METHODS: A sequence-based screening method using previously reported crucial positions identified to be essential for amide-forming capacity of nitrilase (referred to as "amide-formation hotspots") as molecular probes to identify putative amide-forming nitrilases. RESULTS: Based on the previously reported "amide-formation hotspots," we identified a nitrilase NitPG from Paraburkholderia graminis DSM 17151 that could produce a significant amount of mandelamide toward mandelonitrile and exhibited general hydration activity toward various benzylic nitriles. The time-course experiment with NitPG demonstrated that amide was also a true reaction product of nitrilase, suggesting that the nitrile catalysis by amide-forming nitrilase could be a post-transition state bifurcation-mediated enzymatic reaction. Further research demonstrated that low temperature, metal ion addition, and specific substrate structure could profoundly improve the amide formation capability of nitrilase. CONCLUSIONS: NitPG with broad hydration activity is a potential candidate for the enzymatic synthesis of benzylic amides for biotechnological applications. Studying the effect of nitrilase hydration activity could promote our understanding of the factors that influence amide and acid distribution.


Assuntos
Aminoidrolases , Nitrilas , Amidas , Aminoidrolases/metabolismo , Hidroliases , Sondas Moleculares , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...